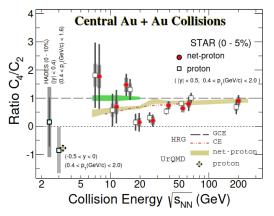

Beam Energy Scan theory talks summary

Dmytro (Dima) Oliinychenko Institute for Nuclear Theory, University of Washington June 7, 2022

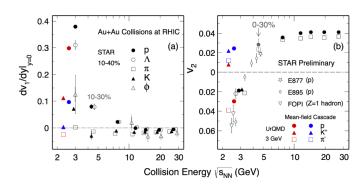
RHIC/AGS Users' Meeting


RHIC goals

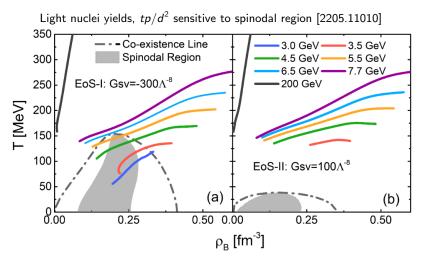
- Learn properties of quark-gluon plasma
- Probe the Equation of State (EoS) of strongly-interacting matter including search for critical point and phase transition

RHIC results challenging theory I

Proton fluctuations [2112.00240]: only non-critical models available

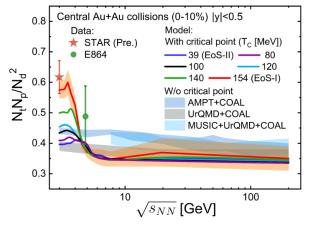


What do we learn from this measurement?


RHIC results challenging theory II

Proton, pion, light nuclei flow [2112.05424, 2112.04055]

- Large sensitivity to EoS [nucl-th/0208016]
- Negative proton dv_1/dy EoS softening, likely indication of phase transition [nucl-th/0406018,1803.02053]
- Notice: maximum $R_{out}^2 R_{side}^2$ at the same energy range [1411.7931]
- EoS softening at which (T, μ) ? Can be far away from chemical freeze-out (T, μ) . Need simulations and Bayesian analysis!


RHIC results challenging theory III

Is RHIC observing a spinodal region?

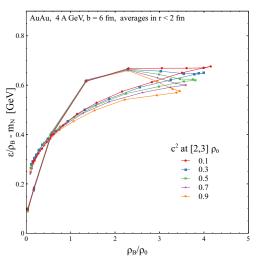
RHIC results challenging theory III

Light nuclei yields, tp/d^2 sensitive to spinodal region [2205.11010]

Is RHIC observing a spinodal region?

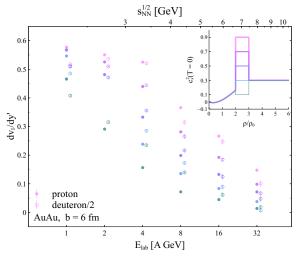
Theoretical approaches, their advantages and challenges

- Hydro+ or fluctuating hydro (+ transport)
 - ✓ Includes critical fluctuations × only up to 2nd order so far
- Hydro (+ transport)
 - √ Easy to build in custom EoS
 - √ Easy to adjust viscosity
 - × Handling spectators (important for flow) under development
 - × Handling phase separation under development
 - × Initial state: compression should depend on EoS
 - × Uncertainties at particlization


Transport

- √ Spectators, initial state compression
- √ No equilibrium assumption
- √ Can handle phase transitions
- √ Can handle critical fluctuations
- × Harder to build in a custom EoS
- × Unknown degrees of freedom

Today's theory talks: focusing on fluctuations


- Mayank's talk
 - Development of framework to treat hydro fluctuations
 - Including fluctuation-dissipation theorem
 - Rather small influence of thermal fluctuations on observables
- Maneesha's talk
 - New method: turning hydro fluctuations into particles
 - Tested in hydrodynamics (boost-invariant + radial expansion)
 - Certain sensitivity of proton scaled variance and rapidity correlations to vicinity to the phase trajectory of the fireball and to diffusion parameter
- Jan's talk
 - Does transport stage change fluctuations? Yes for kurtosis
 - Tests in equilibrated box: fluctuations in a fixed volume
 - Scattering influences cumulants even when potentials are absent
 - Scattering makes inferring baryon cumulants from proton cumulants harder

Alternative approach: Transport approach with flexible EoS

Flow is very sensitive to the stiffness of EoS Working towards Bayesian analysis of flow $+\ HBT + fluctuations$

Alternative approach: Transport approach with flexible EoS

Flow is very sensitive to the stiffness of EoS Working towards Bayesian analysis of flow $+\ HBT + fluctuations$

Summary of summary

- Hydro + afterburner approaches making progress towards realistic calculation of fluctuations
 - √ Account for fluctuation-dissipation theorem [Mayank]
 - ✓ Particlization of fluctuations [Maneesha]
 - √ Testing afterburner effects [Jan]
- Pure transport approaches need more attention
 - Already results for light nuclei are encouraging: maybe we evidence spinodal region at RHIC
 - Bayesian analysis of flow using transport with tunable equation of state would be helpful – work in progress